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A B S T R A C T

Effective visual attention modeling is a key factor that helps enhance the overall Quality of Experience (QoE) of
VR/AR data. Although a huge number of algorithms have been developed in recent years to detect salient regions
in flat-2D images, the research on 360-degree image saliency is limited. In this study, we propose a superpixel-
level saliency detection model for 360-degree images by figure-ground law of Gestalt theory. First, the input
image is segmented into superpixels. CIE Lab color space is then used to extract the perceptual features. We
extract luminance and texture features for 360-degree images from L channel, while color features are extracted
from a and b channels. We compute two components for saliency prediction by figure-ground law of Gestalt
theory: feature contrast and boundary connectivity. The feature contrast is computed on superpixel level by
luminance and color features. The boundary connectivity is predicted for background measure and it describes
the spatial layout of image region with two image boundaries (upper and lower boundary). The final saliency map
of 360-degree image is calculated by fusing feature contrast map and boundary connectivity map. Experimental
results on a public eye tracking database of 360-degree images show promising performance of saliency prediction
from the proposed method.

1. Introduction

The Human Visual System (HVS) can rapidly and accurately process
visual information in its visual field [1]. With large amount of visual
information, selective attention in the HVS would select the most
relevant parts while ignoring others when viewing visual scenes. Various
studies in computer vision have tried to build computational models
of visual attention by stimulating the attention mechanisms in the
HVS [2]. Saliency detection models can be generally categorized as
bottom-up and top-down approaches. Bottom-up mechanism is a data-
driven, and task-independent perception process for automatic salient
region selection for natural scenes [3–14], while top-down mechanism
is a task-dependent processing affected by the performed tasks, feature
distribution of targets, etc. [15–19].

During the past decades, many saliency detection models have
been successfully used in various visual processing applications such as
retargeting [20], quality assessment [16,21], coding [22,23], segmen-
tation [24], etc. Itti et al. proposed a computational model of visual
attention based on the neuronal architecture of the primates’ early
visual system [14]. In that study, multi-scale feature contrasts from
intensity, color and orientation are extracted to compute the saliency
map [14]. Based on Itti’s model, a graph-based saliency detection model
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was proposed by using a new measure of dissimilarity [12]. Brue et al.
adopted the concept of information maximization for visual attention
modeling [25]. That visual attention model measures Shannon’s self-
information to obtain the saliency map. The characteristics of the HVS
by including contrast visual masking, perceptual decomposition, sensi-
tivity functions, and center–surround interactions are used for visual
attention modeling [26]. Later, Liu et al. proposed a novel saliency
detection model by designing a saliency tree [27].

Another type of saliency detection models are built in transform
domain. The concept of spectral residual in transform domain was
proposed for saliency detection [6]. In that study, Hou et al. used the
log spectra representation of images in Fourier Transform to calculate
saliency value for images. Later, phase spectrum was used to design a
visual attention model for video sequences in [22]. Guo et al. predicted
saliency map by Inverse Fourier Transform on the original phase spec-
trum and the constant amplitude spectrum [22]. Chen et al. presented
a frequency-based saliency model based on the Fourier Transformation
of multiple spatial Gabor filters [28].

Based on learned sparse codes, Wang et al. presented a saliency
detection model by site entropy rate [11]. Recently, some researchers
adopted patch-level contrast for visual attention modeling [20,29].
Goferman et al. designed a saliency detection model by considering the
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Fig. 1. 360-degree image sample. Left boundary and right boundary of 360-degree image are connected. The rightmost sun and the leftmost sun belong to the same
sun.

context of the dominant objects as well as the objects themselves [29].
Zhang et al. presented an eye fixation prediction model by surrounded-
ness prediction [30]. Fang et al. introduced saliency detection models
in compressed domain for images and video sequences [20,31]. Qi et al.
proposed Graph-Boolean Map method to predict salient regions [32]. In
that study, Qi et al. use a graph inference based on belief propagation
to generate saliency map.

These saliency detection methods mentioned above are all designed
for flat-2D images or video. Recently, virtual reality (VR) has been
growing increasingly popular in both industry and academia, where
360-degree images are widely used in the related VR applications.
Therefore, it is meaningful to design effective visual attention models for
360-degree images, which can be used in various VR applications such
as the Quality of Experience of VR. Different from flat-2D images, 360-
degree images only have two boundaries (upper and lower boundary) as
shown in Fig. 1, while left boundary and right boundary of 360-degree
images are connected.

Recently, ICME 2017 has held a competition named Salient360!
Grand Challenge to try to solve the problem of 360-degree images
saliency detection [33]. Participants were provided with a series of
360-degree images with given ground truth data. The details on the
dataset are described by Rai et al. [34]. Some models presented in this
competition try to deal with the 360-degree saliency detection [35–
41]. In [35], Ling et al. extracted the image features by dictionary
based on sparse representation. Then image features and latitude-bias
enhancement were used to estimate 360-degree image saliency. In [36],
the authors explored how existing visual saliency models for 2D images
can be extended to saliency detection models of 360-degree images
in the equirectangular format. Different from the methods mentioned
above which only use low-level features, Battisti et al. combined low-
level and semantic features for visual saliency estimation [39].

Currently, there are a few saliency detection models exploiting the
boundary prior [31,32,42–44]. However, all of these existing studies use
the boundary prior for flat-2D image saliency detection. Some of these
models directly assume the image boundary as background [43,44].
In [42], only regions that connect to image boundary are likely to
be background regions, while others will be considered as foreground
regions. Recently, some superpixel-level saliency detection models such
as [45,46] have been proposed to try to improve the saliency detection
performance on flat-2D images.

In this study, based on figure-ground law of Gestalt theory, we pro-
pose a novel saliency detection model for 360-degree image. The figure-
ground law of Gestalt theory states that foreground is more smaller and
has high contrast compared to the background [47]. According to this
statement, we calculate feature contrast and boundary connectivity for
image saliency computation. First, the 360-degree image is segmented
into superpixels. The color space is then converted to CIE Lab color
space, in which we extract the luminance and texture features from

channel L, while color features are extracted from a and b channels.
Superpixel-level feature contrast is computed on each channel in Lab
space and boundary connectivity is estimated for background measure.
Finally, we combine the boundary connectivity and feature contrast
together to predict the final saliency map of 360-degree image.

The contributions of this paper: (1) Based on figure-ground law of
Gestalt theory, we propose a novel saliency detection model for 360-
degree images. (2) A reliable background measure, called 360-degree
boundary connectivity, is defined to compute background prior in 360-
degree images.

The remaining of this paper is organized as follows. In Section 2,
the proposed model is described in detail. Section 3 provides the
experimental results on the eye tracking database. The final section
concludes the paper.

2. Proposed model

In this study, we propose a novel saliency detection model based on
Gestalt theory for 360-degree image. The proposed framework is shown
in Fig. 2. It firstly segments 360-degree image into superpixels. Then we
convert the color space into CIE Lab color space. The luminance, texture,
and color features are extracted from each segmented channel images.
Based on the figure-ground law of Gestalt theory, the feature contrast is
calculated by different features and boundary connectivity is defined to
measure background. The final saliency map is computed by combining
the boundary connectivity and feature contrast. We will introduce the
details step by step in the following subsections.

2.1. Superpixel segmentation

Some studies use superpixel segmentation to segment images as a
preprocessing step in visual attention modeling [45,46]. Compared with
pixel-level methods, superpixel-level methods can reduce redundant
partial image information, and provide more useful spatial structure for
saliency detection.

Here, we use the simple linear iterative clustering (SLIC) algo-
rithm [48] to segment 360-degree images into superpixels. SLIC al-
gorithm segments an input image using K-means clustering in RGBXY
space, which can yield local and edge-aware superpixels. By default, the
number 𝑘 of clustering centers is the only parameter of the algorithm.
First, 𝑘 initial cluster centers 𝑀𝑖 = (𝐿𝑖, 𝑎𝑖, 𝑏𝑖, 𝑥𝑖, 𝑦𝑖) are sampled on
a regular grid spaced 𝐺 =

√

𝑁∕𝑘 where 𝑁 is the pixel number of
input image. After the initialization, K-means clustering operation is
performed to estimate superpixels.

2.2. Feature extraction

First, we convert the color space into CIE Lab color space, in which
luminance and texture features are extracted from the channel 𝐿, and
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Fig. 2. The proposed framework.

color features are extracted from 𝑎 and 𝑏 channels. The figure-ground
law of Gestalt theory claims that foreground is smaller and with high
contrast compared to background [47]. With these features, the feature
contrast 𝐶𝑛

𝑖 of superpixel 𝑖 is calculated based on Gestalt theory as:

𝐶𝑛
𝑖 = −

∑

𝑖≠𝑗
𝐷𝑛

𝑖𝑗 𝑙𝑜𝑔(𝑁(𝑑𝑖𝑗 )) (1)

where 𝑛 ∈ {𝐿, 𝑇 , 𝑎, 𝑏}; 𝐷𝑖𝑗 denotes the feature difference between
image superpixels 𝑖 and 𝑗 and it is calculated by 𝐿1 norm; 𝑁 is the
normalization operation; 𝑑𝑖𝑗 is geodesic distance between superpixels
𝑖 and 𝑗. By using a weighting factor based on the distance 𝑑𝑖𝑗 , we put
more emphasis for the feature contrast computation on those regions
closer to the current patch. The geodesic distance 𝑑𝑖𝑗 of 360-degree
image superpixels is computed as:

𝑑𝑖𝑗 =

{
√

𝑥2 + 𝑦2 𝑥 ≤ 𝑤∕2
√

(𝑤 − 𝑥)2 + 𝑦2 𝑥 > 𝑤∕2
(2)

where 𝑥 and 𝑦 are horizontal distance and vertical distance between
superpixels 𝑖 and 𝑗, respectively; 𝑤 is width of 360-degree image.
Texture feature 𝑇 can be computed as follows:

𝑇 =
√

𝑇 2
𝑎 + 𝑇 2

𝑏 (3)

where 𝑇𝑎 and 𝑇𝑏 are horizontal gradient map and vertical gradient map
based on 𝐿 channel.

Finally, four feature contrast maps 𝐶𝑛 are calculated in three chan-
nels including 𝐿, 𝑎, and 𝑏 channel by Eq. (1). The overall feature contrast
map 𝐶 of the input 360-degree image is computed as the average of the
feature contrast:

𝐶 = 1
𝑀

∑

𝑛∈{𝐿,𝑇 ,𝑎,𝑏}
𝑁(𝐶𝑛) (4)

where 𝑁 is the normalization operator and 𝑀 is the number of features
(𝑀 = 4).

2.3. 360-degree boundary connectivity

In this study, we also use image boundary information for saliency
calculation based on Gestalt theory. The figure-ground law of Gestalt
theory indicates that foreground is more smaller and with high contrast
compared to background [47]. Here, a novel and reliable background
measure, called 360-degree boundary connectivity is defined to obtain
background prior in 360-degree image by figure-ground law of Gestalt
theory. The definition is shown as follows.

𝐹𝑖 =
𝑁(𝛼𝑖)

1 + 𝜆𝑁(𝛽𝑖)
(5)

where 𝐹𝑖 is 360-degree boundary connectivity of superpixel 𝑖; 𝛼𝑖 is min-
imum distance between superpixel 𝑖 and 360-degree image boundaries
(upper and lower boundary); 𝛽𝑖 represents size of superpixel 𝑖; 𝜆 is a pa-
rameter. As shown in Eq. (5), the boundary connectivity is proportional
to the distance and inversely proportional to the superpixel size. The
figure-ground law of Gestalt theory suggests that small regions generally
belong to foreground [47]. A region that is more smaller and farther
away from the boundaries, the more likely it belongs to foreground.

2.4. Saliency prediction

As described above, we calculate the feature contrast map and
boundary connectivity map for any given 360-degree image. The
saliency of the image can be predicted based on these two maps by:

𝑆 = 𝐶 ∗ 𝐹 (6)

where 𝐶 is average feature contrast map; 𝐹 is 360-degree boundary
connectivity map. By combining these two maps, we can adaptively
obtain image saliency for each input 360-degree image.

Furthermore, we incorporate multiple scales to improve the contrast
between salient and non-salient regions. Specifically, the saliency map
𝑆 for an input image can be calculated by:

𝑆 = 1
𝑅

∑

𝑘∈{𝑟,2𝑟,3𝑟,4𝑟}
𝑆𝑘 (7)

where 𝑟 denotes the number of superpixels for the input image; 𝑅 is the
number of scales (𝑅 = 4); 𝑘 ∈ {𝑟, 2𝑟, 3𝑟, 4𝑟}; 𝑆𝑘 is defined in Eq. (6).

We show some saliency map samples at different scales in Fig. 3.
From this figure, we can see that the saliency map from scale 𝑟 detects
the details of the background, while the saliency map at multi-scale is
more smooth than those at single scale.

Harel et al. observed that most of fixation nodes concentrate on
center of image [12]. There are two reasons for this: first, photographers
often use salient objects as the center of image; second, it is natural for
an observer to focus directly on the center of image when viewing an
image [12]. For 360-degree images [49], although observer can view
360-degree images freely (the body moves back and forth, or the head
moves up and down), there is also a similar center bias for these two
reasons as shown below. Therefore, we have added the center bias as
post-processing.

Inspired by [39,50], obtaining the clustering of the fixation points
by convolving the fixation points map with a Gaussian kernel, is usually
used to produce the saliency map. The saliency map 𝑆 convolving with
a Gaussian kernel as follows:

𝑆′ = 𝐺𝜎 ∗ 𝑆 (8)
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Fig. 3. Multi-scale saliency map samples. Row 1: original image and ground-truth, respectively; row 2: saliency maps from scale 𝑟 and scale 4𝑟, respectively; row 3:
saliency maps from multi-scale.

where 𝐺𝜎 is Gaussian kernel function with 𝜎 as the standard deviation
of the Gaussian filter; 𝑆′ is final saliency map.

3. Experimental results

In this section, we conduct the comparison experiments to evalu-
ate the performance of the proposed method. We first introduce the
evaluation methodology and quantitative evaluation metrics. Then the
performance of the proposed method is evaluated by comparing with
other existing ones.

3.1. Evaluation methodology

We perform comparison experiments on Salient360 database [34,49]
including 45 360-degree images with eye tracking data. Salient360
database contains many indoor or outdoor 360-degree images with
complex backgrounds and a variety of small objects. Generally, an effec-
tive saliency detection model would predict the saliency maps similar
with the fixation maps. Three commonly used evaluation metrics are
used to evaluate the performance of the proposed method: the Receiver
Operating Characteristics (ROC), the Linear Correlation Coefficient (CC)
and the Kullback–Leibler divergence (KL) [51].

ROC curve [51] is widely used for performance evaluation of saliency
detection models in the literature. The saliency map from computational
saliency detection model can be divided into salient points and non-
salient points through defining a threshold. The fixation map from eye
tracking data includes the target points and the background points. The
True Positive Rate (TPR) is defined as the percentage of target points
falling into the salient points from a computational saliency detection
model, while the False Positive Rate (FPR) is defined as the percentage
of background points falling into the salient points. The ROC curve of a
specified saliency detection model can be obtained as the curve of TPR

vs. FPR through choosing different thresholds. Specifically, TPR and FPR
are defined as:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

. (10)

Generally, the higher the ROC curve is, the better the predication per-
formance of the saliency detection model is for the saliency prediction.
The area under ROC curve (AUC) can be used to measure the saliency
performance quantitatively. With larger AUC values, the performance is
better for saliency prediction.

CC [51] provides a measure of degree of linear correlation between
the saliency map and fixation map. In this experiment, we use Pearson’s
correlation coefficient between two variables to calculate CC for the
saliency detection models. It is defined as the covariance of the saliency
map and fixation map divided by the product of their standard devia-
tions as following:

𝐶𝐶(𝑠, 𝑓 ) =
𝑐𝑜𝑣(𝑠, 𝑓 )
𝜎𝑠𝜎𝑓

(11)

where 𝑠 and 𝑓 denote saliency map and fixation map, respectively;
𝑐𝑜𝑣(𝑠, 𝑓 ) is the covariance; 𝜎𝑠 and 𝜎𝑓 are the standard deviation values
of the saliency map and fixation map, respectively. The correlation
coefficient is computed in the range of [0, 1], where 0 implies that
there is no linear correlation between the saliency map and fixation
map, while 1 implies a linear equation of the relationship between the
saliency map and fixation map. With larger CC value, the better the
performance of the saliency detection model is.

Besides ROC and CC, KL [51] is also used to evaluate the performance
of the proposed method in this study. KL is used to measure the distance
between these two distributions as following.

𝐾𝐿(𝐴,𝐵) = 1
2
(
∑

𝑛
𝑎𝑛𝑙𝑜𝑔

𝑎𝑛
𝑏𝑛

+
∑

𝑛
𝑏𝑛

𝑏𝑛
𝑎𝑛

) (12)
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Fig. 4. The comparison results of ROC from different models.

Table 1
AUC and CC values from different saliency detection models.

Models HSD SSD CA GS IFRC MR SF SO The proposed

AUC 0.72 0.77 0.82 0.77 0.75 0.74 0.59 0.76 0.91
CC 0.38 0.42 0.47 0.40 0.43 0.39 0.18 0.38 0.73

where 𝐴 and 𝐵 are saliency distribution at human fixation locations
and random locations with probability density functions 𝑎𝑛 and 𝑏𝑛,
respectively. and 𝑛 is the index of the saliency value bin. With larger
KL value, the better the performance of the saliency detection model is.

3.2. Comparison with other existing related works

In this study, we use the following saliency detection models to
conduct the comparison experiment: HSD [52], SSD [53], CA [29],
GS [54], IFRC [50], MR [44], SF [8], and SO [42]. HSD [52] presents
saliency detection model by a measure of region scales, which is
compatible with human perception of object scales and helps deal with
small salient objects. SSD [53] proposes a visual saliency method in the
frequency domain, where the authors assume that the secret of visual
saliency may mainly hide in the phases of intermediate frequencies. In
CA [29], the salient regions are regarded to contain not only dominant
objects but also the parts of the background. GS [54] exploits a new
background measure to provide more clues for saliency detection.
IFRC [50] estimates visual saliency by nonlinearly integrating features
using region covariance. In MR [44], saliency detection is considered as
a ranking and retrieval problem. In SF [8], local and the global contrast
are both considered in a unified way to estimate visual saliency. SO [42]
investigates the boundary prior to assist other saliency clues for visual
saliency estimation.

We provide the quantitative results in Table 1, where CC and
AUC results from different saliency detection models are provided.
Those scores are all averaged over images in the database Saliency360.
From this table, we can see that the proposed model obtain much
higher values of CC and AUC than those of the other studies, which
demonstrates that the proposed model can predict much more accurate
saliency results than other studies.

Furthermore, The ROC curves of these compared models are pro-
vided in Fig. 4, to evaluate the performance of the proposed saliency
detection model. From this figure, we can see that the proposed model
can provide the best performance among the compared models.

Additionally, we can observe the comparison results of different
image saliency detection models in Fig. 5. From the second and fourth
rows, we can see that HSD [52] and CA [29] detect some background
regions as salient. For SSD [53] and IFRC [50], the main problem is that
both of them directly assume the image boundaries as backgrounds. As
shown in the third and sixth rows in Fig. 5, only center regions are
detected as salient in images. From the fifth, seventh and ninth rows
of Fig. 5, we can see that GS [54], MR [44] and SO [42] fail to detect
salient regions accurately due to the complex backgrounds of images.
For SF [8], it may lose some salient information in images as shown in
the eighth row. Overall, compared with the ground truth in the last row
of Fig. 5, the proposed model can predict more accurate saliency results
than other existing ones, as shown in the saliency maps of the tenth row
in Fig. 5.

3.3. Comparison with other 360-degree saliency models

The Table 2 shows the experimental results of the proposed model
and other saliency detection models on the evaluation dataset of
Salient360! Challenge. The existing models used in the comparison ex-
periment contain WHU [35], SJTU [37], TU1 [38], TU3 [38], TU5 [38],
URome3 [39], CDSR [35], ZJU [36] (denoted as ‘BMS-FSM-Eq’ in the
original manuscript) and DCT. As shown in this table, TU Munich [38]
submitted several different models and the performance of these models
is listed in this table. Wuhan Univ. [35] submitted two models to the
Salient360! Challenge and CDSR [35] is the model presented in that
paper. DCT was submitted to the Salient360! Challenge by ourselves.
From this table, we can see that the proposed model outperforms other
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Fig. 5. Sample saliency maps. Row 1: original images; Row 2–11: saliency maps from HSD [52], SSD [53], CA [29], GS [54], IFRC [50], MR [44], SF [8], SO [42],
and the proposed model, and the ground truth map.

Table 2
Comparison of the proposed model with other saliency prediction models presented in 360-degree images
Salient360! Challenge (DCT denotes the method we submitted to this Challenge and it is different from the
proposed model) on evaluation dataset.

Models WHU SJTU TU1 TU3 TU5 URome3 CDSR DCT ZJU The proposed

KL 0.51 0.65 0.75 0.74 0.64 0.81 0.50 1.14 0.44 0.80
CC 0.71 0.67 0.62 0.60 0.56 0.52 0.73 0.57 0.69 0.75

models in terms of CC values on head motion. For KL values, the
proposed method can obtain better performance than URome3 and
DCT models (salient360! submission version). The experimental results
demonstrate that the proposed saliency detection model by Gestalt
theory can obtain promising performance in saliency prediction of 360-
degree images.

4. Conclusion

In this paper, we propose a novel saliency detection model based on
Gestalt theory for 360-degree image. According to figure-ground law of
Gestalt theory, the superpixel-level feature contrast in each channel in

CIE Lab space is adopted and the concept of 360-degree boundary con-
nectivity is defined as background measure to extract background map.
The final saliency map for 360-degree image is predicted by combining
the feature contrast and boundary connectivity. Experimental results
show that the proposed saliency detection model can obtain promising
performance for 360-degree image saliency prediction.

However, the proposed model is not the best one by KL values com-
pared with other 360-degree saliency models presented in Salient360!
Challenge. The reason may be that it ignores other important features,
such as semantic features. In terms of efficiency, the computational
complexity can be further improved. In the future, we will further
explore the visual saliency detection for 360-degree images in the
aspects of effectiveness and efficiency.
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